

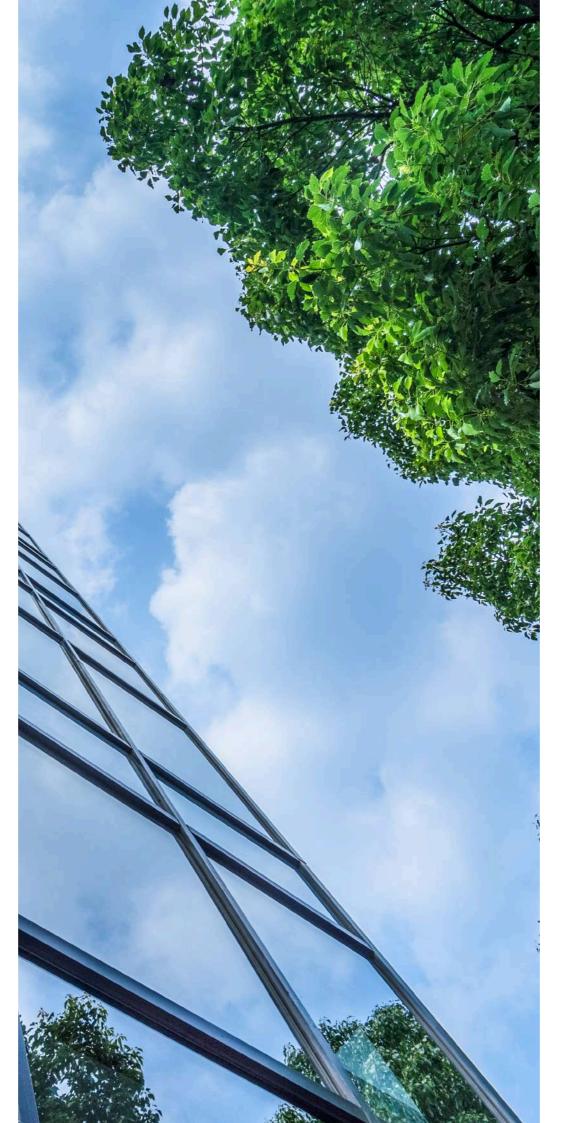
WIRE ROD PRODUCT CATALOGUE

ABOUT US

Emirates Steel Arkan Group is a public joint stock company (ADX: EMSTEEL) and the UAE's largest steel and building materials manufacturer. The Group leverages cutting-edge rolling mill technologies to supply the domestic and international markets with high quality finished products including wire rods, reinforcing bars, heavy sections and sheet piles. Additionally, the Group produces premium cement, blocks, pipes, and dry mortar, offering a complete solution for the manufacturing and construction sectors.

CORPORATE PHILOSOPHY

VISION


To be a world class steel manufacturer providing the highest quality products, services and solutions to our customers and maximizing returns to our shareholders.

MISSION

- To provide the construction, manufacturing and industrial sectors with their requirements of high-quality steel products.
- Maintain safe and environmentally friendly work practices across our operations.
- Create employment opportunities and inspire our workforce to excel.
- Contribute to the industrialization and diversification of the UAE economy in line with the national Industrial Strategy 'Operation 300bn'.

CORE VALUES

- Honesty, Integrity, Creativity, Innovation and Quality.
- Pursuit of continuous improvement across all aspects of our business.

CEO MESSAGE

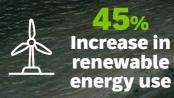
Welcome to Emirates Steel, an Emirates Steel Arkan company, where our commitment to sustainability and cutting-edge technologies is setting new standards in the steel industry. As CEO, I take pride in leading a division that comprises 70% of our group's total product portfolio, serving as the sole integrated steel plant in the UAE. Our global reach spans over 70 countries across Europe, the Americas, Asia, the Middle East, and Africa, reflecting our dedication to meeting diverse client needs worldwide.

At Emirates Steel, we customize solutions for our wire rod customers, emphasizing continuous improvement and product excellence across sectors like welding, construction, oil and gas, consumer goods, textiles, paper, electricity, automotive, and agriculture, while upholding high quality and environmental sustainability.

Our approach involves forging close partnerships with customers, demonstrated through the dedication of our sales, product development, R&D, supply chain, operations, and quality teams. By intimately understanding our customers' needs, we develop products, services, and IT tools aimed at fostering strong and meaningful partnerships.

Sustainability is central to our operations, with our ambitious commitment to achieving net zero carbon by 2050 showcasing our dedication to environmental stewardship. We offer a range of solutions related to green steel certification, demonstrating our commitment to not only meeting but exceeding evolving environmental standards within our industry.

Our relentless investment in innovation, digitalization, and R&D aims at providing cutting-edge solutions and pioneering the smarter products of tomorrow. Through these efforts, we continue to align with our vision of being a world-class company, setting the benchmark for excellence in the steel industry.


Eng. Saeed Al Ghafri

CEO of Emirates Steel, an Emirates Steel Arkan Company

PAWING THE WAY IN SUSTAINABILITY

84% Clean Energy

y/y waste reduction in 2023

5,390 Trees planted

OUR DECARBONIZATION JOURNEY

	WSA Average	Peer Average (DRI)	2019	2022	2023	2050
Emission Intensity (tCO2e/t of steel)	1.9	1.3	1.1	• CCUS • Clean Energy • Scrap %	0.72	Maximize Energy Efficiency Green H2 Increase Scrap Increase Clean Energy Low Carbon Iron Value Chain Last mile offsetting

CARBON CAPTURE, UTILIZATION AND STORAGE

Emirates Steel in partnership with ADNOC & Masdar has developed world's first **CCUS for steel production.** With capacity of up to 800kt of CO2/year and pipe it 43 km to ADNOC's Rumaitha and Bab oil fields. System is working since 2016.

GREEN HYDROGEN

First-of-a-kind green hydrogen electrolysis demonstration plant in the MENA region to produce green steel

- Springboard for UAE to accelerate decarbonization of hard-to-abate steel sector
- Will catalyze future uptake of large-volumes of green hydrogen from domestic green hydrogen for the UAE steel industry in line with the UAE Hydrogen Strategy
- Equivalent to up to 168,000 trees planted

Scan to download our Sustainability Report

PRODUCT AND PROCESS CERTIFICATIONS

ES has devised its own green steel standard (GHG Protocol based), enabling the production of green steel products. This entire process is verified by a third party (DNV) in accordance with ISO 14064

ISO 14001

Green Building Certified

Health product declaration (HPD)

ISO 45001

Environmental Product Deceleration

LEED Certified

Recycle Content (RC)

Green Steel Certificate

SUSTAINABILITY INITIATIVES

Emirates Steel is a key member of several national and international organizations, sharing the sector's best practice and promoting the concept of sustainable business:

Worldsteel Sustainability Charter

Sustainability
Digitalization platform

A Member of Emirates Green Building Council

Green Belt

AI & Blockchain Digital CO2 emissions

1. MATERIAL HANDLING

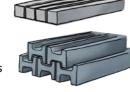
JETTY AREA Iron Oxide Pellets 6.2 million tons per annum

2. DIRECT REDUCTION

Natural gas-based direct reduction process equipped with the **CCUS System (Carbon Capture) and H2 electrolyzer** to produce low carbon footprint compared to other iron melting processes.

H2 ELECTROLYZER

3. STEEL MAKING


HOW WE MAKE OUR STEEL

BLOOMS Heavy Sections

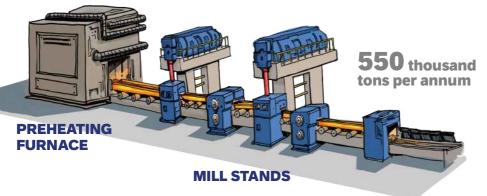
BEAM BLANKSHeavy Sections, Sheet Piles

SLABSSheet Piles

ELECTRIC ARC FURNACE (EAF)

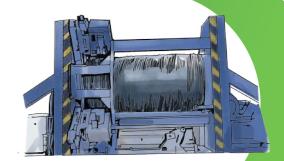
3x STEEL MAKING PLANTS

3.7 million tons per annum


LADLEPrecise control over steel chemistry in line with Customer requirements

DRI (Direct Reduced Iron)

4. WIRE ROD ROLLING MILL



LAYING HEAD

COIL FORMING

COIL COMPACTING

WIRE ROD ROLLING MILL FEATURES

Annual capacity: 0.55 Mtpa
Rolling Mill stands with horizontal and vertical blocks (45 degree K type)
Cooling Equipment: Stelmor conveyor with cover (hood) and blowers for special grades

State of the art measuring equipment: LAP gauge for product dimensions and ovality to ensure within standard values (LAP gauge)

Product Range:

Plain Wire rod (dia): 5.5-16mm Rebar in coil (dia): 8-16mm

FINISHED PRODUCTS

- Highest material quality, achieved through the Direct Reduced Iron (DRI) process, also known as "Blue Steel" products.
- The adoption of the latest mill process technology guarantees superior thermomechanical and metallurgical properties.
- Unparalleled dimensional accuracy, ensuring our products meet the highest industry standards.
- Latest online product measurement systems and Enhanced Temperature Control Systems, ensuring consistency in mechanical properties.
- Our coil reforming technology guarantees that coils are handled with the utmost care, ensuring they reach our customers in perfect condition, demonstrating excellent coil stability and damage prevention.

- Our production facility's high automation level, along with continuous quality checks at every stage, enables us to consistently produce wire rods of the highest quality.
- The high surface quality of our products is achieved through a **closed-stream casting process** with aluminum killed, alongside stringent control of continuous casting process parameters. This ensures **exceptional cleanliness of our wire rod products** with very low levels of harmful elements such as Phosphorus (P), Sulphur (S), and tramp elements.

GUARANTEED QUALITY

- Our wire rod products are recognized for their high quality and dimensional precision, thanks to robust quality assurance systems equipped with state-of-the-art equipment and a team of highly skilled professionals dedicated to producing the best possible products by controlling the entire process at every critical point.
- Silicon-controlled steel is specifically produced to serve the needs of the galvanizing downstream industries, ensuring compatibility & performance.
- The homogeneous grain structure of our products leads to consistent mechanical properties, setting a standard for reliability and performance in applications.

CUSTOMER FOCUS

- At Emirates Steel, our commitment towards customer satisfaction is unwavering, encompassing product quality, timely delivery, and comprehensive technical services.
- We believe that regular feedback from our extensive network of customers is invaluable, providing us with the insights needed for the continuous improvement of our products and services.
- Our flexibility in catering to a variety of international standards (including ASTM, BS, EN, JIS, BIS, and others) allows us to meet the diverse needs of our global customers, ensuring that our products align with the specific requirements of different markets.

QUALITY MANAGEMENT

The quality management department of Emirates Steel is focused and dedicated to achieving the rigorous zero defects and zero failures standard and provide our customers with highest premium quality Wire Rod products. We have several dedicated labs for each process sector.

Direct Reduction Plant Laboratory

The laboratory is equipped with highest technology equipment and instrument to provide our customers with highest quality DRI to ensure the final product material quality and properties.

Steel Making Laboratory

Equipped with Spectro Laboratory and Optical Emission to ensure minimal fluctuations of chemical elements within required standards range and can be adapted as per customer special requirements. Also slag analyzers to ensure the highest steel quality.

Rolling Mill Laboratory

Product Mechanical tests of Wire Rod and Re-bar in Coil are performed in Inspection and Testing Laboratories. Suitability of standard and customer requirements is given by well qualified Inspection and Testing team member. The lab will ensure better control of product dimensional tolerances. Also, work in tandem with customers requirement, to continuously fine tune our products.

Metallurgical Laboratory

An integral part of the steelmaking and rolling complex, the metallurgical laboratory, i.e. Central Lab is fully equipped to test variations in steel structure from center to surface, distribution and size of non-metallic inclusions and the nature and depth of surface imperfections. Microstructure of different samples is observed to ensure decarburization level

PRODUCT TECHNICAL SPECIFICATION

Process Route followed:

- Up to 100% DRI
- Up to 40% recycled scrap but for general quality products

Coil Dimensions:

- Size range: 5.5-16mm
- Outside coil diameter: 1200 -1250 mm
- Inside coil diameter: 850 mm
- Coil length: 1600 1750 mm
- Coil weight: 2050 Kgs

Physical Conditions and Metallurgical Properties of Wire rod coils

- Coil free from harmful surface defect. Max depth of surface defects is 1.0% max of wire rod diameter.
- Micro structure: Predominantly fine-grained Ferrite.
- Micro Inclusions: Max level 2.0 (both thin and thick series) as per ASTME45.
- Grain size 9-12 as per ASTM E 112

Dimensional tolerances:

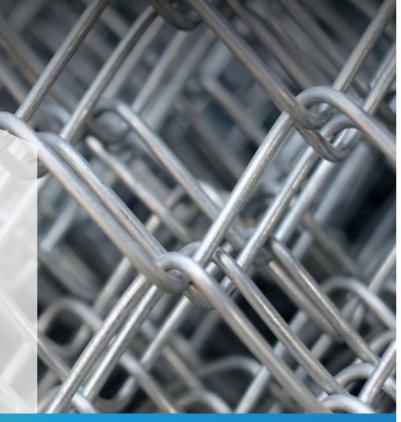
Size range (Diameter in mm)	Tolerance on Diameter (mm)	Ovality (out of roundness) tolerance (mm) max
5.5~7.0	+/- 0.25	0.4
>7.00	+/- 0.30	0.5

Strapping, packaging and delivery

Each coil has 4 straps tied with 7 mm diameter wire.

Labeling

Two rip proof plastic labels are attached to each coil with the following details and shall be marked with name of manufacturer, heat number, size, grade, and coil weight.


Test Certificate

Inspection certificate provided with detailed chemical composition and mechanical properties.

DRAWING AND COLD ROLLING

Our wire rod products are engineered to cater to a broad spectrum of drawing and cold rolling applications. Our offerings are meticulously designed to meet the diverse needs of industries such as construction and infrastructure, agriculture, textiles, paper production, and consumer goods, reflecting our commitment to versatility and quality.

Diverse Applications Across the Broad Carbon Range

Low Carbon Grades: Our low carbon steel products are ideal for a variety of applications, including barbed wire, nails, refrigerator condensers and shelves, coated wires for fences, steel wool, galvanized drawn wire, and components such as cooker's pot holders. This versatility underscores our products' adaptability to different manufacturing needs.

Medium and High Carbon Grades: For applications requiring medium to high carbon content, our products excel in applications such as the manufacturing of nails, bolts, springs for mattresses, sling wire rope, electric cable reinforcements, and more. The robustness and durability of our wire rods make them suitable for products that demand high tensile strength and resilience.

Key Advantages of Our Drawing and Cold Rolling Wire Rod Products

Mechanical / metallurgical properties:

- High Tensile Strength: Our steel wire rods are characterized by their exceptional tensile strength, ensuring that they are durable and reliable for a wide range of applications.
- Excellent Ductility: Demonstrating remarkable ductility, our steel wire rods can withstand

- extensive cold working processes without losing their structural integrity, ensuring flexibility in manufacturing.
- Cold Formability: Our products are designed to facilitate downstream processes, improving the properties of the final products through exceptional cold formability.
- Consistency in Metallurgical Properties: Through precise control over our chemistry, particularly with elements like Silicon (Si), Vanadium (V), Chromium (Cr), and Manganese (Mn), we provide wire rods with specialized mechanical properties conducive to galvanizing applications and other processes.

Dimensions and Tolerances:

- Consistent Dimension: Precision in manufacturing processes allows our steel wire rods to maintain a consistent diameter, making them ideal for subsequent drawing and cold rolling operations.
- **Tight Dimensional Tolerances:** Manufactured with strict adherence to tight dimensional tolerances, our wire rods guarantee uniformity and consistency, meeting the exacting requirements of diverse applications.

Material Quality:

• Superior Surface Finish: The smooth and uniform surface finish of our steel wire rods minimizes friction in drawing processes, thereby enhancing the quality of the final product.

Size range (Dia): 5.5 -16.0 mm

PRODUCT RANGE: DRAWING AND COLD ROLLING

CHEMICAL COMPOSITION, %

MECHANICAL PROPERTIES

Standard	Grade		С	9	Si	N	1n		P	s	N			Strength, /mm2	Elongation, %	Reducti Area, S
Statitualu	Graue	min	max	min	max	min	max	min	max	min max	min	max	min	max	min	min
	C4D		0.06	0.06	0.12	0.30	0.45		0.030	0.030						
	C7D	0.05	0.09	0.06	0.13	0.30	0.45		0.030	0.030						
	C9D		0.10	0.06	0.14	0.30	0.45		0.030	0.030						
	C10D	0.08	0.13	0.06	0.15	0.30	0.45		0.030	0.030						
	C12D	0.10	0.15	0.06	0.15	0.30	0.45		0.030	0.030				400~570	23~28	
	C15D	0.12	0.17	0.10	0.20	0.30	0.45		0.030	0.030						
	C18D	0.15	0.20	0.10	0.20	0.30	0.45		0.030	0.030						
	C20D	0.18	0.23	0.15	0.25	0.30	0.45		0.030	0.030						
	C26D	0.24	0.29	0.15	0.25	0.55	0.65		0.030	0.030						
	C32D	0.30	0.35	0.15	0.25	0.55	0.65		0.025	0.025						
	C38D	0.35	0.40	0.15	0.25	0.55	0.65		0.025	0.025				590~		
	C42D	0.40	0.45	0.15	0.25	0.55	0.65		0.025	0.025				860	14~23	45~7
ISO 16120-2:2011	C48D	0.45	0.50	0.15	0.25	0.55	0.65		0.025	0.025						
BS EN 16120-2:2011																
MS - ISO 16120-2 :2008	C50D	0.48	0.53	0.15	0.25	0.55	0.65		0.025	0.025						
	C52D	0.50	0.53	0.15	0.25	0.55	0.65		0.025	0.025						
	C56D	0.53	0.58	0.15	0.25	0.55	0.65		0.025	0.025						
	C58D	0.55	0.60	0.15	0.25	0.55	0.65		0.025	0.025				870~		
	C60D	0.58	0.63	0.15	0.25	0.55	0.65		0.025	0.025				950	11~14	35~4
	C62D	0.60	0.65	0.15	0.25	0.55	0.65		0.025	0.025						
	C66D	0.63	0.68	0.15	0.25	0.55	0.65		0.025	0.025						
	C68D	0.65	0.70	0.15	0.25	0.55	0.65		0.025	0.025						
	C70D	0.68	0.73	0.15	0.25	0.55	0.65		0.025	0.025						
	C72D	0.70	0.75	0.15	0.25	0.55	0.65		0.025	0.025				1000~		
	C76D	0.73	0.78	0.15	0.25	0.55	0.65		0.025	0.025				1200	10	30
ISO 16120-3:2017	C78D	0.75	0.80	0.15	0.25	0.55	0.65		0.025	0.025						
	C80D	0.78	0.83	0.15	0.25	0.55	0.65		0.025	0.025						
ISO 16120-3:2017	C3D1		0.05		0.05	0.20	0.40		0.025	0.025				390	28	
BS EN 16120-3:2017	C4D1		0.06		0.10	0.20	0.45		0.025	0.025				420	28	
MS-ISO 16120-3:2008																
	C3D2		0.05		0.30	0.30	0.50		0.020	0.025						
	C5D2		0.07		0.30	0.30	0.50		0.020	0.025		0.007				
	C8D2	0.08	0.12		0.30	0.30	0.50		0.020	0.025		0.007				
	C10D2	0.10	0.14		0.30	0.30	0.50		0.020	0.025		0.007		400~		
	C12D2	0.06	0.10		0.30	0.30	0.50		0.020	0.025		0.007		550	25~28	
	C15D2	0.08	0.12		0.30	0.30	0.50		0.020	0.025		0.007				
	C18D2	0.10	0.14		0.30	0.30	0.50		0.020	0.025		0.007				
	C20D2	0.10	0.17		0.30	0.30	0.50		0.020	0.025		0.007				
	C26D2	0.13	0.17	0.10	0.30	0.30	0.50		0.020	0.025		0.007				
	C32D2	0.18	0.29	0.10	0.30	0.30	0.50		0.020	0.025		0.007				
	C36D2	0.24	0.34	0.10	0.30	0.30	0.50		0.020	0.025		0.007				
ISO 16120-4:2017	C38D2	0.30	0.38	0.10	0.30	0.30	0.50		0.020	0.025		0.007		570~	44	
BS EN 16120-4:2017	C40D2	0.34	0.38	0.10	0.30	0.30	0.50		0.020	0.025		0.007		900	14~23	40~7
MS- ISO 16120-4:2008	C42D2	0.36	0.40	0.10	0.30	0.30	0.50		0.020	0.025		0.007				
	C46D2	0.44	0.48	0.10	0.30	0.50	0.70		0.020	0.025		0.007				
	C48D2	0.46	0.50	0.10	0.30	0.50	0.70		0.020	0.025		0.007				
	C50D2	0.48	0.52	0.10	0.30	0.50	0.70		0.020	0.025		0.007				
	C52D2	0.50	0.54	0.10	0.30	0.50	0.70		0.020	0.025		0.007				
	C56D2	0.54	0.58	0.10	0.30	0.50	0.70		0.020	0.025		0.007		010~		
	C58D2	0.56	0.60	0.10	0.30	0.50	0.70		0.020	0.025		0.007		910~ 950	11~14	35
	C60D2	0.58	0.62	0.10	0.30	0.50	0.70		0.020	0.025		0.007		330		
	C62D2	0.60	0.64	0.10	0.30	0.50	0.70		0.020	0.025		0.007				
	C72D2	0.70	0.74	0.10	0.30	0.50	0.70		0.020	0.025		0.007				
						0.50	0.70		0.020	0.025		0.007		1000~		
	C76D2	0.74	0.78	0.10	0.30	0.50				0.023						
	C76D2 C78D2	0.74	0.78	0.10	0.30	0.50	0.70		0.020	0.025		0.007		1200	10	30

- Chemical composition and mechanical properties can be adjusted as per customer requirements
- Other elements can be added to achieve required mechanical and metallurgical properties

16 Emirates Steel Arkan Wire Rod Product Catalogue 1

PRODUCT RANGE: DRAWING AND COLD ROLLING

CHEMICAL COMPOSITION, %

MECHANICAL PROPERTIES

							, 70										
Standard	Grade		С	9	ii	N	1n	1	P	:	S		N		Strength, mm2	Elongation, %	Reduction Area, %
Standard	Grade	min	max	min	max	min	max	min	max	min	max	min	max	min	max	min	min
	AISI/SAE 1005		0.06	0.05	0.10		0.35		0.030		0.030						
	AISI/SAE 1006		0.08	0.06	0.12		0.35		0.030		0.030						
	AISI/SAE 1008	0.06	0.08	0.06	0.12	0.30	0.50		0.030		0.030						
	AISI/SAE 1010	0.08	0.13	0.10	0.20	0.30	0.60		0.030		0.030						
	AISI/SAE 1011	0.08	0.13	0.10	0.20	0.60	0.90		0.030		0.030						
	AISI/SAE 1012	0.10	0.15	0.10	0.20	0.30	0.60		0.030		0.030						
	AISI/SAE 1013	0.11	0.16	0.06	0.12	0.50	0.80		0.030		0.030				400~	25~28	
	AISI/SAE 1015	0.13	0.18	0.06	0.12	0.30	0.50		0.030		0.030				570		
	AISI/SAE 1016	0.13	0.18	0.10	0.20	0.60	0.90		0.030		0.030						
	AISI/SAE 1017	0.15	0.20	0.10	0.30	0.30	0.60		0.030		0.030						
	AISI/SAE 1018	0.15	0.20	0.10	0.30	0.60	0.90		0.030		0.030						
	AISI/SAE 1019	0.15	0.20	0.10	0.30	0.70	1.00		0.030		0.030						70
	AISI/SAE 1020	0.18	0.23	0.10	0.30	0.30	0.60		0.030		0.030						
	AISI/SAE 1021	0.18	0.23	0.10	0.30	0.60	0.90		0.030		0.030						
	AISI/SAE 1022	0.18	0.23	0.10	0.30	0.70	1.00		0.030		0.030						
	AISI/SAE 1023	0.20	0.25	0.10	0.30	0.30	0.60		0.030		0.030						
	AISI/SAE 1025	0.22	0.28	0.10	0.30	0.30	0.60		0.030		0.030						
	AISI/SAE 1026	0.22	0.28	0.10	0.30	0.60	0.90		0.030		0.030						
	AISI/SAE 1029	0.25	0.31	0.10	0.30	0.60	0.90		0.030		0.030						
	AISI/SAE 1030	0.28	0.34	0.10	0.30	0.60	0.90		0.030		0.030						
	AISI/SAE 1034	0.32	0.38	0.10	0.30	0.50	0.80		0.030		0.030						
	AISI/SAE 1035	0.32	0.38	0.10	0.30	0.60	0.90		0.030		0.030						
	AISI/SAE 1037	0.32	0.38	0.10	0.30	0.70	1.00		0.030		0.030				580~	14~24	40~70
ASTM A510M-13:2013	AISI/SAE 1038	0.35	0.42	0.10	0.30	0.60	0.90		0.030		0.025				910	14~24	40~70
	AISI/SAE 1039	0.37	0.44	0.10	0.30	0.70	1.00		0.030		0.025						
	AISI/SAE 1040	0.40	0.43	0.15	0.30	0.70	0.80		0.025		0.025						
	AISI/SAE 1042	0.40	0.47	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1043	0.40	0.47	0.15	0.30	0.70	1.00		0.025		0.025						
	AISI/SAE 1044	0.43	0.50	0.15	0.30	0.30	0.60		0.025		0.025						
	AISI/SAE 1045	0.45	0.50	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1046	0.43	0.50	0.15	0.30	0.70	1.00		0.025		0.025						
	AISI/SAE 1049	0.46	0.53	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1050	0.48	0.55	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1053	0.48	0.55	0.15	0.30	0.70	1.00		0.025		0.025						
	AISI/SAE 1055	0.50	0.60	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1059	0.55	0.65	0.15	0.30	0.50	0.80		0.025		0.025						
	AISI/SAE 1060	0.55	0.65	0.15	0.30	0.60	0.90		0.025		0.025				930~		
	AISI/SAE 1064	0.60	0.70	0.15	0.30	0.50	0.80		0.025		0.025				1100	11~12	30~35
	AISI/SAE 1065	0.67	0.72	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1067	0.68	0.73	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1069	0.65	0.75	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1070	0.67	0.72	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1072	0.70	0.76	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1074	0.70	0.80	0.15	0.30	0.30	0.60		0.025		0.025				1110~		
	AISI/SAE 1075	0.70	0.80	0.15	0.30	0.60	0.90		0.025		0.025				1200	10	28
	AISI/SAE 1078	0.72	0.85	0.15	0.30	0.60	0.90		0.025		0.025						
	AISI/SAE 1080	0.75	0.88	0.15	0.30	0.70	1.00		0.025		0.025						

⁻ Chemical composition and mechanical properties can be adjusted as per customer requirements

PRODUCT RANGE: DRAWING AND COLD ROLLING

CHEMICAL COMPOSITION, %

MECHANICAL PROPERTIES

Standard	Grade		С	:	òi	N	I n	ı	P	:	s	ı	N		Strength, /mm2	Elongation, %	Reduction Area, %
		min	max	min	max	min	max	min	max	min	max	min	max	min	max	min	min
	SWRM 6		0.08				0.60		0.035		0.035						
	SWRM 8		0.10				0.60		0.035		0.035						
	SWRM 10	0.08	0.13			0.30	0.60		0.035		0.035				450~	28~30	70~75
JIS G3505:2004	SWRM 12	0.10	0.15			0.30	0.60		0.035		0.035				530	20 30	70 73
313 03303.2004	SWRM 15	0.13	0.18			0.30	0.60		0.035		0.035						
	SWRM 17	0.15	0.20			0.30	0.60		0.035		0.035						
	SWRM 20	0.18	0.23			0.30	0.60		0.035		0.035				580	25	70
	SWRM 22		0.10		0.10	0.30	0.60		0.035		0.035				360	25	/0
	SWRH 27	0.24	0.31	0.15	0.35	0.30	0.60		0.030		0.030						
	SWRH 32	0.29	0.36	0.15	0.35	0.30	0.60		0.030		0.030						
	SWRH 37	0.34	0.41	0.15	0.35	0.30	0.60		0.030		0.030				F000		
	SWRH 42A	0.39	0.46	0.10	0.25	0.30	0.60		0.030		0.030				590~ 890	15~24	45~70
	SWRH 42B	0.39	0.46	0.15	0.35	0.60	0.90		0.030		0.030				050		
	SWRH 47A	0.47	0.50	0.10	0.25	0.35	0.55		0.030		0.025						
	SWRH 47B	0.47	0.50	0.15	0.35	0.70	0.80		0.030		0.025						
	SWRH 52A	0.52	0.55	0.10	0.25	0.35	0.55		0.030		0.025						
JIS G3506:2004	SWRH 52B	0.52	0.55	0.15	0.35	0.70	0.80		0.030		0.025						
	SWRH 57A	0.56	0.60	0.10	0.25	0.35	0.55		0.030		0.025						
	SWRH 57B	0.56	0.60	0.15	0.35	0.70	0.80		0.030		0.025				900~	11~15	35~45
	SWRH 62A	0.62	0.65	0.15	0.35	0.35	0.55		0.025		0.025				950	11 13	33 43
	SWRH 62B	0.62	0.65	0.15	0.35	0.70	0.80		0.025		0.025						
	SWRH 67A	0.65	0.69	0.15	0.35	0.35	0.55		0.025		0.025						
	SWRH 67B	0.65	0.69	0.15	0.35	0.70	0.90		0.025		0.025						
	SWRH 72A	0.70	0.76	0.15	0.35	0.30	0.60		0.025		0.025						
	SWRH 72B	0.71	0.75	0.15	0.35	0.60	0.90		0.025		0.025				950~	10~11	30~35
	SWRH 77A	0.75	0.80	0.15	0.35	0.60	0.90		0.025		0.025				1150	10 11	30 35
	SWRH 77B	0.75	0.80	0.15	0.35	0.60	0.90		0.025		0.025						

⁻ Chemical composition and mechanical properties can be adjusted as per customer requirements

⁻ Other elements can be added to achieve required mechanical and metallurgical properties

⁻ Other elements can be added to achieve required mechanical and metallurgical properties

64

COLD HEADING

We are at the forefront of providing specialized wire rod solutions, meticulously tailored to meet the precise requirements of our esteemed customers across various demanding industries such as automotive, construction, oil and gas, and manufacturing sectors.

Our products are designed to support a wide range of applications within the cold heading segments, including case hardening, quenching and tempering, as well as heat-treated cold-rolled and

Mechanical and Metallurgical properties:

- Enhanced Cold Ductility and Mechanical Properties: Our selection includes low and medium carbon, boron, and alloyed steels, engineered for superior cold ductility and exceptional final mechanical properties.
- Diverse Tensile Strength Range: We offer a wide spectrum of tensile strengths, accommodating a variety of industrial applications and manufacturing demands.
- Optimal Microstructural Properties: The microstructure homogeneity, including uniform austenitic grain size, guarantees the mechanical integrity and performance of our wire rods.
- Exceptional Upsetability: Our wire rods exhibit very good upsetability, enhancing their formability in cold heading applications.

Dimensions and Tolerances:

Uniformity in Dimensions: Our wire rods are characterized by their uniform and consistent dimensions, ensuring reliability and precision in manufacturing processes.

Material Quality:

- Enhanced Surface Finish: Each product boasts a clean surface finish, minimizing the need for additional processing and facilitating smoother manufacturing workflows for downstream processes.
- Tightly Controlled Chemical Composition: We maintain a controlled chemical composition within a very close band, ensuring consistent quality and performance across batches.
- **Reduced Impurities:** Our wire rods feature low nitrogen and oxygen contents, contributing to their overall quality and performance.
- Minimal Decarburization: The low decarb level across our products ensures that their core mechanical properties are preserved during manufacturing processes.
- Superior Steel Cleanliness: We pride ourselves on the superior cleanliness levels of our steel, which significantly reduces the inclusion content, enhancing the product's overall quality.

Size range (Dia): 5.5 -13.0mm (16.0*)

PRODUCT RANGE: COLD HEADING - CHQ (1/3)

															:
Standard	Grade		ပ	S		Mn	-	۵		s		8	₹	z	lensile Strength N/mm2
		min	max	min	max	min	max	min m	max	min max	min	max	min max	min max	min ma
	C2C		0.03		0.10	0.20	0.40	0	0.020	0.025	2		0.020		
	C4C	0.02	90.0		0.10	0.20	0.40	0.	0.020	0.025	2		0.020		
000	CBC	0.06	0.10		0.10	0.25	0.45	0	0.020	0.025	2		0.020		
2.2001	C10C	0.08	0.12		0.10	0.30	0.50	0.	0.025	0.025	2		0.020		
1000	C15C	0.13	0.17		0.10	0.35	09.0	0	0.025	0.025	2		0.020		
	C17C	0.15	0.19		0.10	0.65	0.85	0	0.025	0.025	N.		0.020		
	C20C	0.18	0.22		0.10	0.70	06.0	0	0.025	0.025	2		0.020		
	C10E2C	0.08	0.12		0.30	0.30	09.0	0.	0.025	0.025	2				360
	C15E2C	0.13	0.17		0.30	0.30	09.0	0	0.025	0.025	25				<u></u>
	C17E2C	0.15	0.19		0.30	09.0	0.90	0.	0.025	0.025	ις.				
EN 10263-	C20E2C	0.18	0.22		0.30	0.30	09.0	0	0.025	0.025	2				
3:2001	1582	0.13	0.20		0.30	09.0	0.80	0.	0.025	0.025	2				
	18B2	0.16	0.20		0.30	09.0	0.80	o.	0.025	0.025	2				
	18MnB4	0.16	0.20		0.30	0.90	1.20	0	0.025	0.025	N.				
	22MnB4	0.20	0.24		0.30	0.90	1.20	0	0.025	0.025	2				
	C3SEC	0.32	0.39		0.30	0.50	0.80	0.	0.025	0.025	2				
	C35RC	0.32	0.39		0.30	0.50	0.80	0	0.025	0.025	2				
	C45EC	0.42	0.50		0.30	0.50	0.80	0.	0.025	0.025	2				
	C45RC	0.45	0.50		0.30	0.50	08.0	0.	0.025	0.025	2				
	1782	0.15	0.20		0.30	09.0	0.90	0.	0.025	0.025	2	0.005			
	2382	0.20	0.25		0.30	09.0	0.90	0	0.025	0.025	2	0.005			
	28B2	0.25	0.30		0.30	09.0	0.90	0.	0.025	0.025	2	0.005			
EN 10263-	3382	0.30	0.35		0.30	09.0	0.90	0	0.025	0.025	2	0.005			530
4:2001	38B2	0.35	0.40		0.30	09.0	0.90	0.	0.025	0.025	2	0.005			93(
	17MnB4	0.15	0.20		0.30	06.0	1.20	0	0.025	0.025	2	0.005			
	20MnB4	0.18	0.23		0.30	0.90	1.20	0.	0.025	0.025	2	0.005			
	23MnB4	0.20	0.25		0.30	0.90	1.20	0.	0.025	0.025	2	0.005			
	27MnB4	0.25	0.30		0.30	06.0	1.20	0.	0.025	0.025	2	0.005			
	30MnB4	0.27	0.32		0.30	0.80	1.10	0.	0.025	0.025	2	0.005			
	36MnB4	0.33	0.38		0.30	0.80	1.10	0	0.025	0.025	2	0.005			
	37MnB5	0.35	0.40		0:30	1.15	1.45	0	0.025	0.025	2	0.005			
BS EN	19MnB4	0.17	0.24		0.40	0.80	1.15	0	0.025	0.025	2	0.005	0.020		526
10269:1999															5

8 %

^{*}Subject to technical acceptance, minimum quantity and delivery conditions

adjusted a

PRODUCT RANGE: COLD HEADING - CHQ (2/3)

CHEMICAL COMPOSITION, %

TIES	Elongation, Reduction % Area, %	min						50~22									70~75								70~75				
ROPER	Elongation %	min						20~25									25~30								25~30				
MECHANICAL PROPERTIES	Tensile Strength, N/mm2	min max					L	550~	3							000	- 400-	2						, s	580				
_		max			0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008																
	z	min																											
	₹	n max			15	15	15	15	15	15	15	15	15							50	50	50	50	50	50	50	50	50	50
		min			0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015							0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
	8	min max			0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003																
		max	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
	S	min																											
	۵	max	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
		п																											
N, %	Min	max	09.0	09.0	0.95	1.00	0.60	0.90	06.0	0.90	0.90	0.95	0.90	0.60	09.0	09.0	09.0	09.0	09.0	0.40	0.50	0.50	0.50	09.0	0.90	0.90	1.00	09.0	1.00
CHEMICAL COMPOSITION, %		min	0.30	0.30	0.83	0.70	0.30	09.0	0.60	09.0	0.60	0.80	0.60			0.30	0.30	0.30	0.30	0.25	0.30	0.30	0.30	0.30	0.70	09.0	0.70	0.30	0.70
ОМРС	Si	n max			5 0.25							5 0.30								0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
CALC		min	0.	e e	2 0.15	en en	∞.	∞.	1	4	4	2 0.15	∞	<u>&</u>	0.	m	ι	∞.	0	8	0.	3	2	∞.	∞.	0	0	m	0
HEM	U	n max	15 0.20	18 0.23	18 0.22	18 0.23	0.28	0.28	5 0.31	0.34	0.34	0.32	32 0.38	0.08	0.10	0.13	0.15	0.18	15 0.20	90.0	0.10	0.13	0.15	13 0.18	13 0.18	15 0.20	15 0.20	18 0.23	0.10
0		min	0.15	0.18	0.18	0.18	0.22	0.22	0.25	0.28	0.28	0.28	0.32			0.08	0.10	0.13	0.15	0.06		0.08	0.10	0.13	0.13	0.15	0.15	0.18	
	Grade		10817 (G10170)	10B20 (G10200)	10821 (G10210)	10B22 (G10220)	10B25 (G10250)	10B26 (G10260)	10829 (G10290)	10B30 (G10300)	10B31 (G10310)	10B33 (G10340)	10B35 (G10350)	SWRCH 6R	SWRCH 8R	SWRCH 10R	SWRCH 12R	SWRCH 15R	SWRCH 17R	SWRCH 6A	SWRCH 8A	SWRCH 10A	SWRCH 12A	SWRCH 15A	SWRCH 16A	SWRCH 18A	SWRCH 19A	SWRCH 20A	SWRCH 22A
	Standard						ASTM A510/	ASIUM - SAF	1403:2001												JIS-G3507-	2010							

PRODUCT RANGE: COLD HEADING - CHQ (3/3)

- Chemical composition and mechanical properties can be adjusted as per customer requirements - Other elements can be added to achieve required mechanical and metallurgical properties

PROPERTIES Elongation, Reduction % Area, % min min

											7	0/ 04												40
																							28	14
III d X											~004	820											650	850
LIGX																								
	0.020																							
EIGX																								
E																								
E	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.025	0.025
≣																								

⁻ Chemical composition and mechanical properties can be adjusted as per customer requirements - Other elements can be added to achieve required mechanical and metallurgical properties

70 65 65

22 25 22

0.008 0.010 0.008

0.012

0.012

450

430

9

22

430

0.012

520~ 550

0.008 0.008 0.008 0.008 0.008

22

WELDING **ELECTRODES**

22 Emirates Steel Arkan

Our commitment to excellence in the welding industry is underscored by our specialized steel welding grades, designed to ensure seamless compatibility and integrity between the welded joint and the base metal across a spectrum of applications.

Our comprehensive range of steel wire products caters to a variety of welding electrode applications, including:

- Solid wires for Metal Active Gas (MAG) and Metal Inert Gas (MIG) welding
- Carbon steel electrodes and fluxes for Submerged Arc Welding (SAW)
- Carbon steel filler metals for Gas Shielded Arc Welding (GSAW)
- Electrodes for Stick welding (SMAW)

Mechanical and Metallurgical properties:

 Secure the desired mechanical properties through precise adjustments of carbon (C%), manganese (Mn%), and micro-alloying elements percentages, ensuring the welded joint meets specific strength and ductility requirements.

Dimensions and Tolerances:

Uniformity in Dimensions: Our wire rods are characterized by their uniform and consistent dimensions, ensuring reliability and precision in manufacturing processes.

Material Quality:

- Low sulfur (S%) and phosphorus (P%) contents, as well as minimal tramp elements, ensuring unparalleled steel cleanliness.
- Minimize the risk of oxidation in the welded joint, a critical consideration in the selection of welding materials, depending on the welding process and the type of protection used, whether it be shielding gas or flux. This is achieved by fine-tuning the percentages of carbon (C%), silicon (Si%), aluminum (Al%), or titanium (Ti%).
- Enhance the performance of weld joints and electrodes, optimizing nitrogen (N%) and silicon (Si%) levels to improve welding quality and joint integrity.

Size range (Dia): 5.5 -13.0mm

PRODUCT RANGE: WELDING ELECTRODES

CHEMICAL COMPOSITION,

MECHANICAL PROPERTIES

25~28

520~ 560

Grade		U	:S	:=	Σ	Min			•	s	Ī	8
	min	max	min	max	min	max	min	max	min	max	min	max
G2Si (SG1)	90.0	0.14	0.50	08.0	06.0	1.30		0.020		0.020		
G3Si 1 (SG2)	90.0	0.14	0.70	1.00	1.30	1.60		0.020		0.020		
G3Si 2 (SG2-Si)	90.0	0.14	1.00	1.30	1.30	1.60		0.020		0.020		
G4Si 1 (SG3)	90.0	0.08	0.85	0.10	1.60	1.70		0.020		0.020		
S1	0.05	0.15		0.15	0.35	09.0		0.025		0.025		
52	0.07	0.15		0.15	0.80	1.30		0.025		0.025		
23	0.07	0.15		0.15	1.30	1.75		0.025		0.025		
S1Si	0.07	0.15	0.15	0.40	0.35	09.0		0.025		0.025		
S2Si	0.07	0.15	0.15	0.40	08.0	1.30		0.025		0.025		
S2Si2	0.07	0.15	0.40	09.0	0.80	1.30		0.025		0.025		
S3Si	0.07	0.15	0.15	0.40	1.30	1.85		0.025		0.025		
EL8		0.10		0.07	0.25	09.0		0.025		0.025		
EL8K		0.10	0.10	0.25	0.25	09.0		0.025		0.025		
EL12	0.04	0.14		0.10	0.25	09.0		0.025		0.025		
EM11 K	0.07	0.15	0.65	0.85	1.00	1.50		0.025		0.025		
EM12	90.0	0.15		0.10	08.0	1.25		0.025		0.025		
EM12 K	0.07	0.10	0.15	0:30	08.0	1.25		0.025		0.025		
ER70S-2		0.07	0.40	0.70	06.0	1.40		0.020		0.020		
ER70S-3	0.07	0.09	0.65	0.75	1.05	1.40		0.020		0.020		
ER70S-4	90.0	0.15	0.65	0.85	1.00	1.50		0.020		0.020		
ER70S-6	90.0	0.08	0.80	0.90	1.40	1.50		0.020		0.020		
SWRY 11	0.05	0.08		0.03	0.40	09.0		0.025		0.025		
SWRY 21	0.10	0.15		0.03	0.40	09.0		0.025		0.025		
15-52	90.0	0.15	0.45	0.70	06.0	1.40		0.025		0.025		
15-53	0.07	0.15	0.65	0.85	1.00	1.50		0.025		0.025		
15-54	0.07	0.15	0.80	1.15	1.40	1.85		0.025		0.025		
EWR		0.10		0.03	0.38	0.62		0.025		0.025		
EWNR		0.10		0.03	0.38	0.62		0.025		0.025		
.C MIG (XE400P)	0.04	0.10		0.12	0.35	09.0		0.025		0.025		
SWRY 11 B	0.02	0.08		0.03	0.40	09:0		0.025		0.025	0.001	0.002

AWS A5.17/ A5.17M:2007

AWS A5.18/ A5.18M:2005

JIS-G3503-2006

IS 6419:2000

IS 2879:1998

9

22

440∼ 570

0.008 0.008 0.008 0.008 0.008 0.008 0.008

65

25

450

can be adjusted Chemical composition and Other elements can be ado

LC MIG (XE400P SWRY 11 B

ESA

CABLE ARMOURING

Our wire rod products are specifically used to enhance the structural integrity and safety of electrical cable systems, particularly those utilized in external or underground projects within the construction and telecommunications industries. Our products are meticulously designed to safeguard electric cables against mechanical damages, ensuring reliability and durability in critical infrastructure.

Our portfolio includes wire rods tailored for a variety of cable applications, conforming to the highest industry standards, such as:

- Land cables and telecommunications compliant with BS EN 10257-1:2011 specifications.
- Cable armouring materials designed to provide additional protection against environmental and mechanical stress.
- Aluminum-conductor steel reinforced (ACSR) cable materials, offering enhanced strength and conductivity for power transmission.
- Submarine cables as per BS EN 10257-2:2011, engineered for optimal performance and longevity under marine conditions.

Advantages of Our Cable Armour Wire Rod Products:

Mechanical and Metallurgical Properties

- Exceptional Crush Resistance: Engineered for durability, our wire rods provide robust protection for cables subjected to high stress and pressure, particularly in underground and external applications.
- High Ductility and Impact Resistance: Our products exhibit superior ductility and resistance to impact, ensuring they maintain their integrity & functionality even under challenging conditions.

Material Quality

Optimized Chemical Composition: We offer customized solutions with varying silicon (Si) content to meet specific resistivity performance requirements. Exceptionally low sulfur (S%) and phosphorus (P%) levels in our materials guarantee a product of the highest quality with superior steel cleanliness levels.

Size range (Dia): 5.5 -13.0 mm

PRODUCT RANGE: CABLE ARMOURING - CAQ

CHEMICAL COMPOSITION,

,	max	0.030	0.025	0.025	0.025	0.025	0.025	0.030	0.030	0.030	0:030	0.025	0.030
•	min												
	max	0.030	0:030	0.025	0.025	0.025	0.025	0:030	0:030	0:030	0:030	0.025	0.030
	min												
	max	0.35	06:0	06:0	06.0	0.35	0.40	06:0	06.0	06.0	06:0	0.45	0.35
2	min		09.0	09.0	09.0		0.25	0.30	0.30	0.30	0.30	0.30	
5	max	0.10	0.30	0.30	0.30			0.35	0.35	0.35	0.35	0.05	0.10
י	min	0.05	0.15	0.15	0.15			0.10	0.10	0.10	0.10		0.05
,	max	90.0	0.50	69.0	0.72	90.0	0.08	0.65	0.70	0.75	0.78	90.0	0.06
_	min		0.45	0.64	0.67			09.0	0.65	0.70	0.73		

ASTM A510/ A510M

IS7887:1992

r re	ă
43	echanical and metallurgical prope
\equiv	_
0	Ġ
S	-∺
3	2
_	=
9	g
5	Œ
perties can be adjusted as per custome	\sqsubseteq
0	0
ச	8
2	_
崇	(C)
ä	.≓
(I)	ਰ
ă	Ÿ
\Box	9
Ø	\equiv
(0	auired mecha
Ď	Œ,
Æ	-≡
Φ	5
\sim	Œ,
50	Other elements can be added to achieve rec
_	\gtrsim
g	.≅
-ĕ	눙
ਲ	Ø
등	9
ĕ	-
\equiv	Œ
$\overline{}$	0
	g
osition and mechanical pr	Φ
ō	9
Ξ	E
S	Ö
emical compos	S
\equiv	υţ
8	Ф
_	\succeq
Sa	8
.≓	Ψ.
	ē
he	Ť
$\overline{\circ}$	Ö
1	1

AISI/ SAE1006 CAG

AISI 1005 - B

ESA

Al Tensile Strength, Elongation Reducti N/mm2 ,% Area, max min max min min

MECHANICAL PROPERTIES

,	min	28	14	11	11	30	30		10			30	28
711111/21	max	400	850	1050	1100	400	450	900~				400	400
	min												
	max												
	min											0.020	

2

30

PRODUCT CERTIFICATION

Emirates Steel's Integrated Management System (quality, environment, health, safety, sustainability, innovation and products have been certified by globally recognized certification bodies.

Emirates Steel holds **50+ certifications**, product licenses and quality marks.

We have adopted **UK Cares Dynamic QR Code verification technology** to assure fast and seamless traceability of products.

حديد الإمارات أركان emirates steel arkan

CONTACT US

+971 2 551 1187

sales@emiratessteel.com

